デジタル技術」カテゴリーアーカイブ

洋上風力発電技術

洋上風力発電技術は、海底に繋がれた浮体式風力タービンの開発により急速に進歩しています。この技術は、大陸棚が急に落ち込むカリフォルニアのような地域で特に有益であり、水深が深いため従来の固定式タービンは実用的ではありません。カリフォルニア州が最近行った浮体式風力タービンの海洋用地の競売は、この技術を利用して海洋から安定したエネルギーを利用するという大きな動きを示している。ギガワット規模の電力を生成できるこれらの設備は、許可の確保や送電線の建設など、工学的、官僚的、物流的な課題に直面しています。バイデン政権は、この技術を再生可能エネルギー目標に大きく貢献することを目指し、2035年までに15ギガワットの浮体式洋上風力発電を建設し、コストを大幅に削減するという目標を設定している。

<3D計測ページへ>

 

光ファイバー網

光ファイバー網は、高速通信を実現するための光ファイバーケーブルのネットワークです。これは従来の電気通信網や日常放送網を置き換えるものであり、自社網利用から、ダークファイバー、瞬間分割多重通信(WDM) 、受動光ネットワーク(PON)、広域イーサネットなどの形で提供されます。

日本では、電電公社(後のNTT)が全国的な通信網を構築し、その後光ファイバーの技術が進歩し、1978年から実験的に導入され、1985年には日本縦貫光ファイバーケーブルが完成しました通信自由化後、早速の電信電話会社が活動を開始し、光ファイバー網の整備が保留されました。

1994年には、郵政省が21世紀の情報通信基盤の整備を目指して光ファイバー網の全国整備を計画しました。特に1995年の阪神・淡路大震災後には、光ファイバーを重点的に整備した基盤の整備が強調されていますた。

2000年代には、日本政府はIT基本法を制定し、ブロードバンド・ゼロ地域脱出計画や次世代ブロードバンド戦略2010を策定しました。これにより、2010年度までにブロードバンドの普及率を100%、FTTHによる超高速ブロードバンドの普及率を90%にすることを目指しました。

また、国際通信の分野では、1989年には通信自由化後、光ファイバー海底ケーブルが導入され、国際通信網の多様性が実現しました。

2019年には、総務省が5GやIoTのバックホール回線用の光ファイバーケーブル敷設を支援する事業を開始しました。新型コロナウイルスのパンデミックが拡大すると、テレワークや遠隔教育の推進のために光ファイバー網の整備が加速され、2030年までに光回線のカバー率を99.9%に引き上げる計画が発表されました。

トップページへ

 

 

AI 半導体の将来

AI 半導体の将来は大幅な成長を遂げており、さまざまな分野で技術の進歩を促進すると予想されています。AI 関連の半導体市場は 2022 年までに 60 億ドルから 300 億ドル以上に成長すると予測されており、年平均成長率は 50% 近くであることがわかります。この成長は、AI によって半導体企業が技術スタックから総価値のかなりの部分を獲得できる可能性があり、業界にとってここ数十年で最高の機会の 1 つとなる可能性があることを示唆しています。

価値創出という点では、AI と機械学習 (ML) は、今後数年以内に年間 350 億ドルから 400 億ドルの価値を生み出す可能性があります。さらに先を見据えると、この数字は年間 850 億ドルから 950 億ドルまで増加する可能性があります。

半導体業界における AI の進化を促進する 3 つの主要なトレンドが特定されています。それは、AI ハードウェアの進歩、より効率的なコンピューティング能力の需要、および幅広い製品およびサービスへの AI 機能の統合です。これらの傾向は、AI ハードウェアと半導体産業が将来の AI の進歩の中心であることを示唆しています。

AI が半導体の設計と生産に与える影響も大きいと予想されます。半導体製造プロセスへの AI の統合は、主に AI アプリケーションによって処理および保存される大量のデータにより、業界に変革をもたらすことになり、半導体の設計と生産に影響を与えることになります。

これらの洞察は、テクノロジー業界における成長、イノベーション、価値創造の大きな機会を伴う、AI 半導体の堅牢かつダイナミックな未来を示しています。

トップページへ

 

デジタルアーカイブ

デジタル写真アーカイブとは、様々な資料や情報をデジタル化して、インターネット上で検索・利用できるように整理・保存・提供するシステムのことです。これにより、古い文書、論文、映像の歴史などの価値があります資料がありますが、物理的な災害や偶然のリスクから守られ、世界中の人々が簡単にアクセスできるようになります。デジタルアーカイブの注意点には、検索のしやすさ、アクセスの容易さ、教育また、著作権のクリアランスやプライバシー保護など、運用上の注意点も存在します。

金型製造技術の進歩

「金型製造技術」(DX) とも呼ばれる金型製造技術の進歩は、生産プロセス全体にわたるデジタル変革の統合に焦点を当てています。企業は、業務を合理化し、設計から仕上げまで金型製造のすべての段階でデータを接続するために、新しいテクノロジーやシステムを導入しています。その一例がツバメックスであり、販売から最終加工までのデータの継続を可能にする独自の3D設計支援システムを開発しました。

これらの新技術の主な目標は、金型の製造リードタイムを短縮することであり、これは、これらのコンポーネントに依存する自動車や電気製品などの業界にとって重要な要素です。早期に 3D 設計を導入し、プレス成形シミュレーションを活用することで、企業は厚板からの深絞り部品の製造に特化できます。これは大手部品メーカーのグループ会社であり、長年プレス金型の工程設計やレイアウト設計を得意とするフクダエンジニアリングの強みです。

金型製造の将来は、専門スキルへの依存を減らし自動化を高めることを目的として、設計と生産における IoT と AI の活用にも目を向けています。この自動化への動きは大きな課題ですが、より効率的で革新的な金型製造方法を生み出すためには不可欠です。

これらの技術は、金型の製造を容易にするだけでなく、金型の品質を向上させ、市場投入にかかる時間を短縮します。これは、今日のペースの速い産業環境において最も重要です。

3D計測に戻る

CAD/CAMプロセス

CAD (Computer-Aided Design) と CAM (Computer-Aided Manufacturing) は、製品の設計から製造に至るまでのプロセスをデジタル化、効率化する技術です。

CADは、製品の設計プロセスをコンピュータ上で行うための技術です。 これにより、エンジニアやデザイナーは2次元(2D)や3次元(3D)のデジタルモデルを作成し、これらのモデルを使用して製品の設計、改良、試験を行います。CADソフトウェアは、複雑な形状のモデリング、強度や動作のシミュレーション、そして部品の寸法などの詳細な情報を提供します。

一方、CAMは、CADで作成されたデジタルモデルを使用して、実際の製品を製造するための技術です。CAMソフトウェアは、製造装置、特にCNC(Computer Numerical Control)機械に指示を出すために使用しますこれらの指示に従って、機械は切削、穴あけ、成形などの製造プロセスを自動で行います。

CADとCAMは頻繁に連携して利用され、製造プロセスを通じた効率と精度の向上、製品開発時間の短縮、コスト削減に努めます。この連携により、デザインから製品完成までのプロセスがスムーズになり、設計変更が容易になるとともに、生産の柔軟性が問題になります。

3D計測に戻る

IoT

インターネット・オブ・シングス(IoT)とは、インターネットや他の通信ネットワークを介してデータをやり取りするデバイスのネットワークです。これらのデバイスには、伝統的なコンピューターや機械だけでなく、センサーやソフトウェア、その他の技術を備えた物理的なオブジェクトが含まれています。これらのセンサーは、温度や動きなどの環境の変化を監視するために組み込まれており、アクチュエーターはセンサーからの信号を受け取り、それに応じて何らかのアクションを起こします。

IoTデバイスは人間の介入なしに動作し、データをやり取りすることができ、デジタル世界と物理的な世界を繋ぐことでよりスマートな環境を作り出し、効率性、精度、経済的な利益の向上を目指しています。日常的な家庭用品から高度な産業用ツールまで、IoTの範囲には様々なデバイスが含まれています。

3D計測に戻る

デジタル電子技術

「デジタル」一般的には、アナログ信号を使用せずに情報を処理する電子技術を意味します。例えば、コンピューター、デジタル時計、デジタルマーケティング、デジタルアートなどがあります。デジタルテクノロジーは、情報を二進数(0と1)で表現し、この形式でデータを保存、処理、展開します。これにより、データのコピーや送信が容易になり、情報の劣化が少なくなるあります。

デジタルの世界は広大で、コンピューターサイエンス、情報技術、デジタルメディア、インターネット影響テクノロジーなど多くの分野に与えられています。デジタル化は産業や日常生活に革命をもたらし、コミュニケーション、演技、労働、教育などの方法を大きく変更しました。

概要ページに戻る

 

NC工作機械

数値制御工作機械(Numerical Control machine tools、略してNC工作機械)は、デジタル情報を基にして自動的に動作する機械の一種です。これにより、工作機械はプログラムに命令された通り、金属やプラスチックなどの材料を精密に加工することができます。

NC工作機械の特徴

  1. 高精度: NC工作機械は非常に高い精度で部品を製造できます。これは、機械が緻密に制御された歩みを再現できるためです。
  2. 繰り返し精度:同じプログラムを使えば、同じ部品を何度でもほぼ同じ品質で製造することが可能です。
  3. 柔軟性: プログラムを変更することにより、様々な形状やデザインの部品を製造することができます。多品種の生産が可能になります。
  4. 生産性: NC作業機械は、手動操作よりも高速で、非稼働時間を減らしながら連続して稼働することができるため、生産性が向上します。

NC工作機械の種類

  • フライス加工機:材料を機械的に固定し、回転するカッターで材料を削り取るです。
  • 旋盤(CNC旋盤): 材料を回転させ、固定されたカッターで形状を削り出します。
  • ドリル加工機: 主に穴あけ作業に用いられる機械で、正確な位置に穴を開けることができます。
  • 研削機:高速回転する砥石を使用して、材料から非常に薄い層を削り取ることにより、高精度の表面仕上げを行います。
  • レーザー加工機: レーザー光を用いて材料を切断、彫刻する機械です。

CNCとの違い

NC工作機械は、元来は紙テープに穿たれた穴や、磁気テープなどに記録された命令に基づいて動作するものですが、技術の進歩により、現在ではコンピューター数値制御(Computer Numerical Control、略し) CNCはより高度なプログラムが可能で、直接コンピュータを使って機械を制御するため、操作性や機能性が大きく向上しています。

プログラミング

NC工作機械のプログラミングには、通常、Gコード(ジー・コード)と呼ばれる言語が使用されます。これは、工作機械の各軸の動き、速度、切削経路などをコード化したものです。 、CAM(Computer Aided Manufacturing)ソフトウェアを使用して、3D CADデータから自動的にGコードを生成することが一般的になっています。


Gコード(G-code)は、工作機械や3Dプリンタなどの数値制御(NC、Numerical Control)システムで使われるプログラミング言語です。CNC(コンピュータ数値制御)機械を動かすためのコマンドを記述します。これにより、機械は切削、旋削、穴あけなどの加工を自動的に実行します。

以下はGコードの基本的な要素とよく使われるコードの一部です。


Gコード

  1. 各アドレスコマンドは特定の文字文字(G、M、X、Y、Zなど
    )から始まり、数値が続きます。
    G01 X10 Y20 Z-5
  2. 座標と移動
    • X、Y、Z : 座標軸。工具や機械が動く位置を示します。
    • F : フィードレート(切削速度)。
    • S : スピンドル回転数。
  3. GコードとMコード
    • Gコード: 動作(直線移動、円弧移動など)を示します。
    • Mコード: 装置の制御(スピンドルのオン/オフ、クーラントの制御など)を示します。

主要なGコード

コード 説明
G00 高速移動(空走)
G01 直線補間(インターインター)
G02 時計の円弧補間
G03 反時計回りの円弧補間
G17 XY平面選択
G18 ZX平面選択
G19 YZ平面選択
G20 インチ単位指定
G21 ミリメートル単位指定
G28 原点復帰
G90 絶対座標指定
G91 増分座標指定

主要なMコード

コード 説明
M00 プログラム停止
M03 スピンドル正回転開始
M04 スピンドル逆回転開始
M05 スピンドル停止
M08 クーラントン
M09 クーラントOFF
M30 プログラム終了・リセット

Gコードの例

以下は簡単な加工プログラムの例です:

gコード
G21 ; ミリメートル単位
G17 ; XY平面選択
G90 ; 絶対座標指定
G00 X0 Y0 ; 原点に移動
G01 Z-5 F100; Z軸で深さ5mmまで切削
G01 X50 F200; X軸で50mm進む
G01 Y50 ; Y軸で50mm進む
G01 X0 ; X軸で元の位置に戻る
G01 Y0 ; Y軸で元の位置に戻る

G00 Z10 ; Z軸を10mm上げる
M30 ; プログラム終了


Gコードは作業機械の仕様によっては非常に異なる場合があります(例:Fanuc、Siemensなど)。作業に使用する機械の取扱説明書を確認することが重要です。

トップページへ

 

物づくりの解析構造

「物づくりの解析構造」製品開発や生産工程におけるシステム的な分析。これには複数の要素が含まれ、それらがどのように相互作用し、最終製品の機能性、品質、生産性、コスト効率などに影響を考慮するためのものです。以下は物づくりにおける一般的な解析構造の要素です。

  1. ニーズ分析(市場分析) :
    • 目標市場の特定
    • 顧客ニーズの特定
    • 活性分析
  2. コンセプト開発:
    • アイデア生成
    • コンセプト選択
    • 概念設計
  3. 詳細設計:
    • 機能要件の定義
    • 設計仕様の詳細化
    • コンポーネントとプロセスの設計
  4. システムズエンジニアリング:
    • 複数のサブシステムの統合
    • システム全体の最適化
    • インターフェースと相互作用の管理
  5. プロタイピング:
    • 初期サンプルの作成
    • 機能テストと改善
    • ユーザーテスト
  6. 生産計画:
    • 生産プロセスの設計
    • 設備と工具の選定
    • 材料と部材の検討
  7. 品質管理:
    • 設計の検証と検査
    • 生産工場の監視
    • 最終製品の品質保証
  8. コスト分析:
    • 材料コスト
    • 製造コスト
    • 関連する間接コスト
  9. サプライチェーン管理:
    • 供給業者との関係
    • 在庫管理
    • ロジスティクスと配送
  10. 持続可能性とエコデザイン
    • 環境に対する影響の評価
    • 再利用、リサイクルのための設計
    • エネルギー効率の最適化
  11. リスク管理:
    • 技術のリスクの評価
    • プロジェクトの遅延、コスト超過の可能性
    • 市場変動への対応
  12. プロジェクト管理:
    • タイムラインとマイルストーンの設定
    • チームとリソースの管理
    • スケジュールと予算の管理

これらの構造は、製品開発のライフサイクルに配慮され、製品が市場で成功するために必要な様々な取り組みを評価し、管理します。それぞれのフェーズには異なる分析手法やツールを置くことがあり、工程の透明性と効率性を高めることを目指します。